
DOI: 10.46541/978-86-7233-406-7_260

Anđelka Čarapić
University of Belgrade, Faculty of
Organisational Sciences
Belgrade, Serbia

Mladen Čudanov
University of Belgrade, Faculty of
Organisational Sciences
Belgrade, Serbia

Ondrej Jaško
University of Belgrade, Faculty of
Organisational Sciences
Belgrade, Serbia

andjelkacarapic6@gmail.com mladen.cudanov@fon.bg.ac.rs ondrej.jasko@fon.bg.ac.rs

COMPARATIVE ANALYSIS OF WATERFALL AND AGILE APPROACH

TO ORGANISATION IN THE STAR MODEL CONTEXT

Abstract: This article presents a comparative analysis of agile in relation to traditional approaches in the organisation
of software systems development, shows the differences through the elements of the organisational system (strategy,
structure, processes, values, human resources, reward system, etc.) using the STAR organisation model. Further, the
goal is to present theoretical views in the context of a project that aims to establish an identity and data access
management system. Our empirical insights come from the development team task management in the Jira software
solution for supporting software development. The result of the research is presented in the form of a comparative
analysis based on the search for optimal software development method approach during an identity management
project. This paper can contribute to deciding in which situations teams can consider to apply Waterfall, and in which
agile approaches for the development of software systems.
Keywords: Agile, Waterfall, STAR model, organisation, software development

1. INTRODUCTION

This paper uses the STAR model Kates and Galbraith (2010) proposed to assess the pros and cons of two different
approaches (Waterfall and agile) in the software development project of the identity and data access management
system. Software development is essentially a complex activity that requires the collective contribution of several
individuals and requires significant coordination and project management (Maruping, 2009). Through creating ideas
and decisions about all the functionalities that software will include, focus attention is on the possibility of changing
requirements. Agility is about the willingness to re-examine the project and the software that is being implemented and
continuously change it following the customer's requirements, where the focus is on the value he received. The
development team is expected to be able to adapt and respond to the changes quickly.
Agile processes impact: software project management, software implementation management and many other aspects.
The goal of agile processes is to make the customer satisfied. Sharma et al. (2012) argue that agile software processes
support iterative and incremental development, where requirements vary according to customer needs. As a result, the
software is delivered at shorter intervals, not after a few months, as with the Waterfall model (McCormick, 2012).
The article compares the agile approach to software development with other, traditional approaches and shows the
differences between these two approaches. The advantages and disadvantages of agile processes over traditional ones
are also discussed in this article, where the focus is on the advantages of the agile approach.The second chapter provides
an overview of the agile approach focusing on Scrum and Extreme programming (XP), Crystal and Lean development
methodologies. The third section describes the Waterfall approaches in detail, and the fourth section provides a
comparative analysis of the Scrum and Waterfall approaches in terms of process, organisational structure,
organisational culture, and staffing.

2. DIFFERENT APPROACHES TO SOFTWARE DEVELOPMENT

The beginning of the agile manifesto in 2001 brings the focus and top priority to the clients satisfaction, which is
achieved by constant and continuous work on the project. Each part of the project is delivered as applicable and is

511

delivered for an agreed period. We are talking about several weeks or several months, where the shorter time intervals
are preferred.
Applicable software is a fundamental measure of progress, according to Beck et al. (2001). After visual displaying and
testing the applicable software by the client, he can get ideas on how he wants to modify the software. According to
Beck et al (2001), the most efficient and productive method of communication is face-to-face contact. The agile
manifesto speaks about the willingness of the entire team to accept changes in client requirements, both at the beginning
when changes are more frequent also at the later stages of software development (Beck et al., 2001). An agile process is
an iterative approach where customer satisfaction comes first, as the customer is directly involved in software
evaluation (Boehm & Turner, 2003; Sharma et al., 2012).
Highsmith and Cockburn (2001) said that the innovation in agile methods is their recognition of people as the primary
drivers of project success. This, together with an intense focus on efficiency and manageability, gives a new
combination of values and principles (Abrahamsson, 2017). The documentation is reduced to an appropriate level. It
still exists, but it is maintained and updated following the course of work on the project.
Software development methodologies support fast development with better customer experience for dynamical
requirements, using iterative and incremental development techniques (Boehm & Turner, 2005; Kulkarni et al., 2011).
Williams (2007) explains that each iteration in an agile approach is a stand-alone, small project with activities that
include requirements analysis, design, implementation, and testing. The clients states their requests for the next
increment based on observations of the current release, instead of guessing at the beginning of the project (Williams,
2007; Van Casteren, 2017).
Agile approach in software development is highly results-oriented, which is why teams decide to use it. Software
development is becoming increasingly complex, with new topics like AI (Devedzic 2021), Internet of Things and
composable applications (Ruschby 2016; Chan 2021) or self integrating systems (Burger er al, 2020). There are many
methodologies for system development, it means that for each system there may be a different software development
methodology (Ericson et al., 2005). This means that choosing an approach to software development can be a
challenging task that requires knowledge of methodological approaches. We will descibe only the most utilised
methodologies: Scrum, Extreme programming, Cockburn's Crystal and Lean development.

2.1. Scrum

Scrum is a framework structured to help teams work together and apply an agile way of thinking to get the job done. It's
based on communication, transparency and commitment to continuous improvement. Scrum term originally comes from
the strategy of rugby game, where it means returning the ball to the game, through teamwork (Schwaber & Beedle,
2002; Abrahamsson, 2017). Encouraging the teams to learn through experience, self-organise in the process of problem
solving, and continuously improve by thinking about their victories/losses connect the
Scrum is an agile methodology that manages software development in specific and short iterations called sprints. Sprint
includes all software development lifecycle model phases, such as planning, design, implementation, testing, etc
(Matharu et al., 2015).
People are the main link in the agile approach, and each person must contribute to the best software solution with their
skills and experience. The multifunctional team includes a combination of developers, software architects, software
analysts and quality assurance experts (Matharu et al., 2015). The Scrum team has more than 5 and less than 9 engineers
(Schwaber & Beedle, 2002). If more people are available, more teams need to be formed (Abrahamsson, 2017). Team
members are focused on how they need to function in order for software to evolve in an ever-changing environment.
Scrum framework offers great flexibility in dealing with changing constraints, whether financial or technological, where
its key to success is focusing on the highest priority tasks (Andrei et al., 2019). The development process is complex
and unpredictable, intending to deliver applicable software after each iteration.
The practices on which these agile methodologies are based recognise that changes in requirements are inescapable and
they accordingly try to adapt on changing requirements as efficiently as possible (Maruping et al, 2009). A
predetermined duration of an iteration is used in software development, and it's important for the development team
because they need to complete all of the assigned tasks during that time.

2.2. Extreme programming (XP)

The use of the Extreme programming method, better known as XP, has been widely recognised as a starting point for
various agile approaches to software development (Abrahamsson, 2017). It facilitates iterative and planned software
development for small teams of developers to achieve higher software quality and increase productivity (Matharu et al.,
2015). XP aims to enable successful software development despite constant changes in software requirements (Flora &
Chande, 2014). Extreme programming is characterised by a high level of interaction with clients during the software
development process and rapidly evolving requirements.
The founders aimed to develop a methodology suitable for object-oriented projects using teams of a dozen or fewer
developers in one location (Abrahamsson, 2017).
XP is coding what a client wants and testing written code to ensure that previous steps in the development process have
achieved what clients and developers intended (Erickson et al., 2005). The idea behind XP is that once the need for

512

specific functions arises and the user sees it, he can inform the development team. The developers don't worry about the
missing features until the client does that. In the XP methodology, pre-requirements don't need to be specified.
The methodology is based on five core values: communication, simplicity, feedback, courage, and respect (Williams,
2007). Communication implies a culture of oral communication and aims to encourage interaction. They apply the
design of the simplest product that meets customers' needs, which refers to simplicity. The development team receives
feedback from clients at the end of each iteration and external release. The development team has to be brave because
they need to resist pressur in certain situations. Regarding respect, team members need to show mutual care in order to
take care of the project and pursue the same goals (Williams, 2007).

2.3. Crystal

In 2001, Alistair Cockburn, one of the creators of the Agile manifesto (Highsmith &Cockburn 2001) who developed the
Crystal methodology, which gives precedence to people involved than to the process. Crystal is characterised by
frequent software delivery, a technical environment where automated tests are applied, close communication, focus on
tasks, frequent integration, etc. This methodology doesn't require the use of certain techniques or special tools.
Moreover, the increments are adaptable in length, for large projects they can last even 4 months (Flora & Chande,
2014).
Crystal is a family of methodologies used on different types of projects, different complexities and sizes. Mnkandla &
Dwolatzky, B. (2004) argued that Crystal can be applied to teams off any size. Larger projects, which require better
coordination and communication, are mapped to darker colors (clear, yellow, orange and red). When it's necessary to
maintain better communication and coordinate with more people, darker colors are used.

2.4. Lean development

Lean development focuses on aspects of project management and doesn't go into technical practice (Flora & Chande,
2014). Due to that it is often integrated with other agile methodologies. Aimed at optimisation, this approach should
optimise the whole organisation and product for the whole time in order to avoid suboptimisation (Alahyari et all.
2019).Lean development has a focus on creating value for the customer, eliminating waste, continuous improvement,
optimising value flows and empowering people (Ebert et al., 2012). It was used for the first time in production, with
clear goals to optimise workflows, and above all to maintain the market and customer needs as the primary goal.
Specifications related to team size are not specified, as Lean development is considered as a software development
management philosophy, rather than a methodology (Flora & Chande, 2014).
Some of the principles Lean is based on are:

• respecting all the people in the team,
• assembling multifunctional teams,
• reducing the time required to identify business problems and faster system delivery,
• eliminating everything that doesn't add value to the customer,
• applying short iterative development cycles and so on (Flora & Chande, 2014).

The principles have similarities with the agile manifesto, and philosophy of Lean methodology is based on the
foundation of the agile approach (Cawley et al., 2010).

3. WATERFALL APPROACH

Waterfall approach can describe a set of traditional software engineering methodologies (Mirza & Datta). It stands out
as an nonflexible approach where tight control is maintained all through the project. This is reflected in the extensive
written documentation required, formal reviews, signatures and approvals from clients. With the Waterfall approach,
the emphasis is on planning, timelines, dates, budgets, and implementing the entire system at once (Flora & Chande,
2014). It focuses on stability and greater security for predefined sets of requirements.
Traditional software development methods depend on a set of predefined processes and documentation that describes
software development progress and leads to further development (Nikiforova et al., 2009; Leau et al., 2012). It's a
sequential approach, so there are stages that software goes through during development, which in the traditional
approach are followed in identical order, and approvals appear at the end of one and before the beginning of the next
phase. When the phase is over, there are no revisions and changes in the results subsequently. Also, no task belonging
to a later phase can be started until the results of the previous phases have been completed and approved. Weisert
(2003) said that the incapability of water to flow uphill suggests the metaphor of a waterfall. Once a certain point is
passed, there is no going backwards because costs increase beyond acceptable, often 10 times more with each phase
(Anitha & Prabhu 2012)
However, Weisert (2003) also argues that the point of any formal life cycle is the phased limited commitment that is
essential to the success of large projects. When the development team knows exactly what functionalities should be
enabled, that they won't change, and during which time they should be completed, that's the motive to complete the

513

work within the given deadline. Precise and fixed definition of the project requirements before development even starts
is imperative for the success of this approach (Leau et al., 2012), and it facilitates project costing, scheduling, and
resource allocation accordingly. The client's advantages by applying this approach and the reasons he decides on the
traditional approach are reflected in his confidence that the project will not take more resources than planned. In this
case, resources primarily include finances, but also time, people, equipment and more. The goal is to be productive, to
avoid unproductive hours and unwanted guidelines. The control over the project, that the client has when approving one
complete phase at a time, is also the reason for applying this approach. Client can make a rational choice estimating
costs/benefits of the future project if faced with well-grounded life cycle waterfall methodology, which is a rare case in
practice.
The waterfall approach would be unproductive when project requirements are not fully understood or defined, which
assumes that they will change during the project. If the development team starts designing and implementing
uncomplete requirements, in most cases there will be an increase in costs that are not in line with the original plan. Most
problems would occur in the later stages of software development.

3.1. The phases of a Waterfall Model

The software development life cycle is a process that includes various stages, from preliminary development analysis to
post-development testing and software evaluation (Leau et al., 2012).
The traditional model implies a sequential development approach, where development proceeds through the phases of
collecting requirements, analysis, design, coding, testing, and maintenance (Flora & Chande, 2014). The phases are
followed in the listed order and it is necessary to approve and verify one phase to move on to the next.
First of all, project requirements are collected and defined, and then, based on the quantity and complexity, the duration
of the project is defined by adding estimation for each of the development phases and anticipating problems.
Afterwards, the team defines the technical infrastructure using diagrams/models in the design and architectural
planning phase (Leau et al., 2012). When these architectural models and diagrams are accepted, the coding phase
begins. Software development is often divided into smaller tasks given to different teams according to their
competences. Near the end of that phase, the customer is included as the project slides into the testing and feedback
cycle. When the customer declares satsfaction with the final result, the project becomes delivered (Leau et al., 2012).
The analysis and coding phases give the most direct value to the final product (Van Casteren, 2017), but it's important
to dedicate enough time to each phase because the next one depends on the performance in the previous phase. The
results of each phase are documented.
In the last phase, the client is provided with a certain type of software support. Eventual additional improvements to the
existing software require that the team must restart activities from the first phase (McCormick, 2012).

4. COMPARISON OF AGILE AND WATERFALL METHDS ON
GALBRAITH'S STAR MODEL

Strategy, structure, processes, rewards and people, as the five key areas that need to be linked and harmonised in order
to successfully shape decisions and behaviors, have been analysed. These five elements form the basis of the Star
Model (Galbraith, 2011), shown in graph below.

Picture 1: Star model

514

The following is an overview of all five categories using agile and traditional approaches.

4.1. Strategy

Vision, mission, core values, and the main set of proposed goals define organisation's strategy as the element of this
model. It determines the direction and talks about the sources of competitive advantage (Galbraith, 2011), which in this
case are the advantages of one approach over another.

Table 1: Comparative analysis based on strategy

Agile approach strategy Traditional approach strategy
 Based on the principles of being highly adaptive,

continously improving, open relation with the client
to ensure good communication and feedback;

 It is argued that "applicable software is a key
measure of progress";

 It is based on an iterative and incremental model of
software development, where software is delivered
at regular and equal intervals, most often at time
intervals from one to six weeks;

 The most important are technical expertise, fewer
shortcomings, continuous testing, integration and
collaborative approach;

 There is direct communication between the
development team and the client (Mora et all,
2020);

 Finding a balance of response to the changing
project requirements and ratio of software quality /
time for delivering the project;

 The emphasis is on planning, timelines, dates,
budgets, and implementing the entire system at
once;

 The systems are predictable and built with extensive
planning where the requirements are known at the
very beginning of the project and will not change
during development (Cho, 2020);

 It focuses on stability and greater security for
predefined sets of requirements (Kulkarni et al,
2011). It is a sequential approach, so there are
stages that software goes through during
development, which are respected in identical order
and approvals are applied at the end of one and
before the beginning of the next phase;

 Comprehensive documentation is mandatory;
 The goal is to be productive, to avoid unproductive

hours and unwanted guidelines, and deliver software
with all agreed functionalities on time;

4.2. Structure

The organisation's structure is the defined by Henry Mintzberg (1993) as the sum of ways organisation divides its work
and coordinates it towards the mutual goal (Jaško et al 2017) Galbraith (2011) claims that structural policies are
classified into specialisation, form, distribution of power, and departmentalisation.
Specialisation refers to the type and number of jobs. The form refers to the number of people who are part of the
department at each level of the structure (Khan at al 2016). The distribution of power balances between the
centralisation or decentralisation in decision making of the organisational members. Departmentalisation is the process
of joining jobs into department of the lower level, or joining the departments of the lower level into those of the higher
level e.g. sectors, divisions for each level of the organisational structure (Jaško et al, 2013). They can be formed on the
basis of various criteria, such as functions, geography, customers, products etc.

Table 1: Comparative analysis based on structure

Structure in agile approach Structure in traditional approach
 Specialisation: small teams, up to 10 employees

(ideally 5 to 9);
 Distribution of power: decentralisation, authority

and decision-making is transferred to the
development team, which during the project can
independently make decisions in agreement with
the client, without consulting senior management;

 Departmentalisation: People-oriented, agile teams
are self-organised. In case there are more than 10
developers, it is recommended to form two teams;

 Specialisation: larger teams;
 Distribution of power: centralised, every decision is

documented and verification by senior management
and stakeholders is necessary;

 Departmentalisation: Process-oriented and guided
by set goals. Teams are structured. The structure is
formalised so that each employee knows the clear
tasks;

4.3. Processes

Management processes can be vertical or horizontal. Vertical processes are the processes of business planning and
budget planning. Horizontal are processes such as developing new products or entering and fulfilling customer
requirements (Galbraith, 2011).

515

Table 3: Comparative analysis based on processes

Processes in agile approach Processes in traditional approach
 Flexibility and adaptability are present in software

development. Usually, during the project's first
phase, a vision is developed, which is agreed upon
by the business owner, product owner, and
stakeholders (Rawsthorne & Shimp 2009; Van
Casteren, 2017). In the second step of the process,
a framework plan supplements that vision. It
includes multiple iterative developments, and in
each one the output is improved through all-round
activities of the analysis, design, coding, and
testing (Alshamrani, & Bahattab 2015). The design
is open to change in every part of the iterative
implementation. Less importance is given to
documentation, and higher to development rapidity.
When each iteration has finished, a meeting with
the clients is organised. The next iteration of the
process is determined by the client given feedback.
The team repeats the abovementioned cycle until a
product is delivered to the customer.

 In this approach the process follows the linear life
cycle model, a software development process where
the production cycle progresses sequentially and
unidirectionally through several stages. The stages
of software development are: requirements
specification, conception, analysis, design, coding,
testing and debugging, installation and finally,
maintenance (McCormic, 2012). The team moves on
to the next stage only after the completion of the
previous stage is accepted by the relevant
stakeholders. The team must maintain the
documentation during all stages of development.

4.4. Reward system

The purpose of the reward system is to align the employee's goals with the organisation's goals, according to Galbraith
(2011). The organisation's reward system includes basic employee salaries, variable rewards and bonuses, criteria for
advancement and promotion system, employee stock options and profit sharing etc. (KErr & Slocum Jr, 2005). In order
to influence strategic direction, the reward system must be consistent with structure and processes, according to the
STAR model (Benjamin et al, 2012). It provides motivation and encouragement to complete the strategic goals that
have been set.

Table 4: Comparative analysis based on the rewarding system

Rewarding system in agile approach Rewarding system in traditional approach
 The approach focuses on client satisfaction, so the

reward system is potentially maintained in cases
where the client indicates a successful cooperation
and collaborative approach with the employee.

 Employee performance can be noticed after each
increment because the results are visible and
testable every few weeks, so employee rewards
can occur more often.

 The approach is oriented towards planning, time
schedules, budget and implementation of the entire
system at once following the plan, so the reward
system can be maintained when the employee has
completed the tasks at earlier stages, before agreed
deadline.

 The results are visible only after the entire phase is
completed and verified, so the employee has the
opportunity to present his results only in a longer
period of time.

4.5. People

This area regulates employment policy, personnel policy, training, and development. Human resources policy creates
skills and ways of thinking for the implementation of requirements, where it simultaneously improves people and
organisational skills (Galbraith, 2011).

Table 5: Comparative analysis based on employee predispositions

People with an agile approach People with a traditional approach
 Flexible approach requires flexible people;
 They are characterised by courage, focus,

dedication, respect and communication;
 They are agile, aware of everything that happens on

the project and willing to cooperate;
 Proactive and adaptable to the circumstances and

changes an agile approach brings;
 Have relevant experience;

 Distributed teams of experts;
 Plan-oriented;
 They have appropriate and necessary skills;
 Trusted employees;
 Their focus is on completing tasks on time;

516

 Their focus is on customer satisfaction and delivery
of high quality software;

5. CONCLUSION

This article presents conclusions based on the experience of identity management system development, a large scale
information systems and technologies project. Its theoretical background is the Galbraiths’s Star model which identifies
five basic elements of the organisational system: strategy, structure, processes, reward system and people. First part of
the article gives brief description of agile vs waterfall approaches. In the following part, elements of the organisational
system are described, according to the Galbraiths’s Star framework. Conclusions are given from the perspective of team
members, participating both in the development under the SCRUM methodology, which was used to implement this
specific system, and the Waterfall approach used previously on earlier projects of the organisation.
Main conclusions are, in the respective areas:

• Strategy –the strategy of organisation where agile methodology is implemented is based on the flexibility,
responsiveness and close interaction with the client, while the strategy of the organisation where Waterfall is
implemented is aimed at efficiency, predictability and ex-ante fixed estimations.

• Structure – the organisation's structure when agile methodology is implemented is based on the small
decentralised teams, which should not limit self-organising potential with the size above 10 members. On the
other hand, waterfall approach tend to produce more centralised and formalised structure, with high power
distance and stricter hierarchy / chain of command. Teams are structured and departmentalisation is based on
the criteria of process phase (regarding waterfall stages)

• Processes- in the organisation where the agile methodology is applied, processes are a less important factor for
other organisational elements. Main process is defined by the applied agile methodology (in this case,
SCRUM) and defines roles and job description of the key methodology facitilitators. However, the core
process of software development does not define the organisation with such strength such as in waterfall
approaches. Multifunctional teams finish the tasks within the SCRUM sprint without strict specialisation or
belonging to the department defined by the process phase. On the other hand, Waterfall approach does not
have strong influence based on its main process which defines the methodology, but the core process of
software development has strong influence on the other elements of organisation, which are largely defined by
the stage – e.g. requirements specification, design, coding or testing.

• Reward system is much more dynamic in an organisation when agile methodology is applied. Results are
visible in several times smaller increments than in the waterfall method, so the delay between the performance
and the reward is shorter, as it i connections with the reward. So, according to the Vroom (1966) expectancy
theory motivation in total should be higher, because the instrumentality – or the connection between the
performance and the reward is much higher in the organisations where agile, compare to the waterfall
methodologies are applied.

• People – when agile methodologies are applied in the organisation, adaptable and proactive employees are
needed and much more likely to perform well, achieve good performance levels and be promoted. Out of the
competence triad, knowledge is mostly the same as expected in the organisations where the Waterfall is
implemented, the knowledge of methodology mostly differentiates skills and the most observable difference is
in the attitudes. The organisation is in much higher need of the employees who do not tend to do what they are
told but what is right.

Main limitations of this study are the restricted sample and the qualitative methods. Employees included in this research
were using the agile approach with the SCRUM, as the improvement the previous Waterfall approaches. While the
organisation is large and dozens of employees participated, methods for data gathering were qualitative – interviews
with the employees and direct observation. Therefore, the interpretation of organisational elements could be subjective.
Future research should focus on one or a few of the hypotheses proposed in this article and recheck it using the
quantitative methods and available measurements of the organisation and its elements.

6. LITERATURE

Abrаhаmsson, P., Sаlo, O., Ronkаinen, J., & Wаrstа, J. (2017). Аgile softwаre development methods: Review аnd
аnаlysis. аrXiv preprint аrXiv:1709.08439.

Alahyari, H., Gorschek, T., & Svensson, R. B. (2019). An exploratory study of waste in software development
organisations using agile or lean approaches: A multiple case study at 14 organisations. Information and Software
Technology, 105, 78-94.

Alshamrani, A., & Bahattab, A. (2015). A comparison between three SDLC models waterfall model, spiral model, and
Incremental/Iterative model. International Journal of Computer Science Issues (IJCSI), 12(1), 106.

517

Andrei, B. А., Cаsu-Pop, А. C., Gheorghe, S. C., & Boiаngiu, C. А. (2019). А study on using wаterfаll аnd аgile methods
in softwаre project mаnаgement. Journаl Of Informаtion Systems & Operаtions Mаnаgement, 125-135.

Anitha, P. C., & Prabhu, B. (2012). Integrating requirements engineering and user experience design in product life cycle
management. In 2012 First International Workshop on Usability and Accessibility Focused Requirements
Engineering (UsARE) (pp. 12-17). IEEE.

Beck, K., Beedle, M., Vаn Bennekum, А., Cockburn, А., Cunninghаm, W., Fowler, M., ... & Thomаs, D. (2001). Mаnifesto
for аgile softwаre development.

Benjamin, B. M., Naimi, L. L., & Lopez, J. P. (2012). Organizational Change Models In Human Resource Development.
Leadership & Organizational Management Journal, 2012(2).

Boehm, B., & Turner, R. (2003). Using risk to bаlаnce аgile аnd plаn-driven methods. Computer, 36(6), 57-66.
Boehm, B., & Turner, R. (2005). Mаnаgement chаllenges to implementing аgile processes in trаditionаl development

orgаnizаtions. IEEE softwаre, 22(5), 30-39.
Burger, A., Cichiwskyj, C., Schmeißer, S., & Schiele, G. (2020). The Elastic Internet of Things-A platform for self-

integrating and self-adaptive IoT-systems with support for embedded adaptive hardware. Future Generation
Computer Systems, 113, 607-619.

Chan, V. W. (2021). Internet of Things and Smart Cities. IEEE Communications Magazine, 59(10), 4-6.
Cho, J. J. (2010). An exploratory study on issues and challenges of agile software development with scrum. Utah state

University, Theses and dissertations repository. Available at: https://digitalcommons.usu.edu/etd/599/ .
Cockburn, А. (2004). Crystаl cleаr: А humаn-powered methodology for smаll teаms: А humаn-powered methodology for

smаll teаms. Peаrson Educаtion.
Cаwley, O., Wаng, X., & Richаrdson, I. (2010, October). Leаn/аgile softwаre development methodologies in regulаted

environments–stаte of the аrt. In Internаtionаl Conference on Leаn Enterprise Softwаre аnd Systems (pp. 31-36).
Springer, Berlin, Heidelberg.

Devedžić, V. (2021). Quo Vadis, AI?. Management:Journal Of Sustainable Business And Management Solutions In
Emerging Economies, 26(1), 1-12. doi:10.7595/management.fon.2021.0001

Ebert, C., Аbrаhаmsson, P., & Ozа, N. (2012). Leаn softwаre development. IEEE Computer Аrchitecture Letters, 29(05),
22-25.

Erickson, J., Lyytinen, K., & Siаu, K. (2005). Аgile modeling, аgile softwаre development, аnd extreme progrаmming: the
stаte of reseаrch. Journаl of Dаtаbаse Mаnаgement (JDM), 16(4), 88-100.

Florа, H. K., & Chаnde, S. V. (2014). А systemаtic study on аgile softwаre development methodologies аnd prаctices.
Internаtionаl Journаl of Computer Science аnd Informаtion Technologies, 5(3), 3626-3637.

Fowler, M., & Highsmith, J. (2001). The аgile mаnifesto. Softwаre development, 9(8), 28-35.
Galbraith, J. R. (2011). The star model. The STAR Model. Available on:

http://www.jaygalbraith.com/images/pdfs/StarModel.pdf
Highsmith, J., & Cockburn, A. (2001). Agile software development: The business of innovation. Computer, 34(9), 120-

127.
Jaško, O., Čudanov, M., Jevtić, M., & Krivokapić, J. (2013). Projektovanje organizacije. Beograd, Srbija: Fakultet

organizacionih nauka (FON).
Jaško, O., Čudanov, M., Jevtić, M., & Krivokapić, J. (2017). Organizacioni dizajn–pristupi, metode i modeli. Beograd,

Srbija: Fakultet organizacionih nauka (FON).
Kates, A., & Galbraith, J. R. (2010). Designing your organisation: Using the STAR model to solve 5 critical design

challenges. John Wiley & Sons.
Kerr, J., & Slocum Jr, J. W. (2005). Managing corporate culture through reward systems. Academy of Management

Perspectives, 19(4), 130-138.
Khan, S., Nicho, M., & Takruri, H. (2016). IT controls in the public cloud: Success factors for allocation of roles and

responsibilities. Journal of information technology case and application research, 18(3), 155-180.
Kulkаrni, V., Bаrаt, S., & Rаmteerthkаr, U. (2011). Eаrly experience with аgile methodology in а model-driven аpproаch.

In Internаtionаl Conference on Model Driven Engineering Lаnguаges аnd Systems (pp. 578-590). Springer, Berlin,
Heidelberg.

Leаu, Y. B., Loo, W. K., Thаm, W. Y., & Tаn, S. F. (2012). Softwаre development life cycle АGILE vs trаditionаl
аpproаches. In Internаtionаl Conference on Informаtion аnd Network Technology (Vol. 37, No. 1, pp. 162-167).

518

McCormick, M. (2012). Wаterfаll vs. Аgile methodology. MPCS, Available online:
http://www.mccormickpcs.com/images/Waterfall_vs_Agile_Methodology.pdf .

Mintzberg, H. (1993). Structure in fives: Designing effective organisations. New York, USA: Prentice-Hall, Inc.
Mirza, M. S., & Datta, S. (2019). Strengths and Weakness of Traditional and Agile Processes-A Systematic Review.

Journal of Software., 14(5), 209-219.
Mnkandla, E., & Dwolatzky, B. (2004). A survey of agile methodologies. Transactions of the South African Institute of

Electrical Engineers, 95(4), 236-247.
Mora, M., Gómez, J. M., O'Connor, R. V., & Buchalcevová, A. (Eds.). (2020). Balancing Agile and Disciplined

Engineering and Management Approaches for IT Services and Software Products. IGI Global.
Mаruping, L. M., Venkаtesh, V., & Аgаrwаl, R. (2009). А control theory perspective on аgile methodology use аnd

chаnging user requirements. Informаtion systems reseаrch, 20(3), 377-399.
Mаthаru, G. S., Mishrа, А., Singh, H., & Upаdhyаy, P. (2015). Empiricаl study of аgile softwаre development

methodologies: А compаrаtive аnаlysis. АCM SIGSOFT Softwаre Engineering Notes, 40(1), 1-6.
Nikiforovа, O., Nikulsins, V., Sukovskis, U.: Integrаtion of MDА Frаmework into the Model of Trаditionаl Softwаre

Development. In: Frontiers in Аrtificiаl Intelligence аnd Аpplicаtions, Dаtаbаses аnd Informаtion Systems V, vol. 187,
pp. 229–239. IOS Press, Аmsterdаm (2009)

Rushby, J. (2016, January). Trustworthy self-integrating systems. In International Conference on Distributed Computing
and Internet Technology (pp. 19-29). Springer, Cham.

Rawsthorne, D., & Shimp, D (2009). Scrum in a nutshell. Available online:
https://www.scrumalliance.org/community/articles/2009/december/scrum-in-a-nutshell .

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum (Vol. 1). Upper Saddle River: Prentice Hall.
Shаrmа, S., Sаrkаr, D., & Guptа, D. (2012). Аgile processes аnd methodologies: А conceptuаl study. Internаtionаl

journаl on computer science аnd Engineering, 4(5), 892.
Vroom, V. H. (1966). Organisational choice: A study of pre-and postdecision processes. Organisational behavior and

human performance, 1(2), 212-225.
Vаn Cаsteren, W. (2017). The Wаterfаll Model аnd the Аgile Methodologies: А compаrison by project chаrаcteristics.

Reseаrch Gаte, 2, 1-6.
Weisert, C. (2003). There's no such thing аs the Wаterfаll Аpproаch. Retrieved from

http://www.idinews.com/wаterfаll.html
Whаt is Scrum? Retrieved from https://www.аtlаssiаn.com/аgile/scrum
Williаms L. (2007) А survey of аgile development methodologies. Available at:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.709.7775&rep=rep1&type=pdf

