

24th International Scientific Symposium
Strategic Management and Decision Support Systems
in Strategic Management

17th May, 2019, Subotica, Republic of Serbia

Zoran Dragičević

PhD student
Faculty of Economics in Subotica
Subotica, Republic of Serbia

Saša Bošnjak

Faculty of Economics in Subotica
Subotica, Republic of Serbia

HARMONIZING BUSINESS AND DIGITAL ENTERPRISE STRATEGIES
USING

SOA MIDDLE-OUT AND SERVICE-BASED APPROACH

Abstract: The organization's agility represents its ability to respond fast to changes by the transformation and/or
optimization of business processes, therefore it is a key factor in the competitiveness and growth of the organization.
Bearing in mind the importance and expansion of the use of digital technologies, the organization's agility can be
compromised if the digital strategy and IT resources are not flexible enough to adequately respond to changed
business conditions. Service-Oriented Architecture (SOA) is an approach to the development of business software
systems that promote better alignment of business and digital strategy, i.e. business goals and IT resources, enabling
the organization to faster adapt and respond to changes in the business environment. However, the success of the SOA
initiative depends largely on the choice of delivery strategy and the way services are identified, as well as the choice of
an approach in the implementation of SOA, given the way of integration and communication between services. The
middle-out delivery strategy is a compromise between top-down and bottom-up approach. This approach, at the same
time, supports SOA implementation guided by a strategic vision, business strategy and strategical goals, and use of
existing IT resources with focus on urgent requirements and tactical goals. Realization of middle-out delivery strategy
is based on several small, iterative SOA projects, where each individual SOA project was implemented to meet
specific business goals and requirements. On the other hand, in order to respond to new challenges and requirements
of the digital era regarding the distribution, scaling and increased complexity, SOA evolves towards increasing agility
and a simpler, service-based approach at business and technical level. This avoids the complexity of the Enterprise
Service Bus (ESB) as an integrator in communication between the services. Avoiding the ESB as a universal mediator
and orchestrator in communication between the services enables a serious shift in the delivery speed and scalability of
software solutions. This paper, in general, discusses the ways of more efficient alignment of business and digital
enterprise strategies based on the implementation of SOA initiatives for the development of business software
systems. Within the framework of the research of this paper, the very significant challenges and best practices are
identified and clearly distinguished, as well as the advantages and disadvantages, related to the architectural and
methodological aspects of the implementation of the SOA middle-out delivery strategy and service-based approach.
The complete research effort, as well as the results obtained, is dedicated to the effective implementation of SOA in
the context of the development of business software systems. The results of the work include consideration of the
evolution of SOA-based approaches in the digital era, leading to increased agility and a reduction of complexity.
Keywords: SOA, business and digital strategy, middle-out, service-based approach, software development

INTRODUCTION

The ability to respond quickly to changes by business process transformation and/or optimization is a key factor in the
competitiveness and growth of organizations in an increasingly competitive environment and market conditions dictated
by globalization and the expansion of the use of digital technologies. However, this ability can be compromised if the
digital strategy and IT resources are not flexible enough to adequately respond to changed business conditions. Service-
Oriented Architecture (SOA) is an approach to the design of corporate software solutions that affirm better compliance
of business and digital strategy, i.e. business goals and IT resources, enabling the organization and its business partners
to adapt more quickly and respond to changes in the business environment. On the other hand, SOA can be viewed as a
result of the application of service orientation, where service orientation is a paradigm that unambiguously establishes a
framework composed of a specific set of software development design principles (Erl, 2005; SOA Manifesto, 2013).

SOA aims to improve the efficiency and productivity of an organization using services as a basic tool for
implementing enterprise business logic in software solutions and supporting the implementation of strategic goals
related to service-oriented computing, where three strategic goals are the most important: increasing organizational
agility, increasing ROI and reducing IT costs. Well-implemented SOA projects directly link IT resources to the business
goals of the organization. This directly improves key aspects of the organization, such as, among others, 1) to build
stronger relationships with customers and suppliers, 2) facilitate obtaining more accurate, more complete and more
updated information of business intelligence that are critical to making better decisions. The direct implication of these
two improvements reflects better support of key business processes that are achieved through increased availability of
information with a significant impact on increasing employees’ productivity. On the other hand, SOA as an advanced
integration technology (Šereš & Tumbas, 2014) provides a platform for easy development and maintenance of
integrated systems and applications, and easier harmonization of IT resources with the business model and changing
business requirements. This approach enables faster and cheaper application development, with a clear focus on
increased productivity, flexibility and ease of maintenance (Erl, 2007).

However, although well-planned and implemented SOA projects can help the organization to improve
competitiveness, they do not provide a guarantee of a success. The success of SOA in increasing of competitiveness, as
a very complex process, largely depends on the choice of delivery strategy and the way services are identified, on the
one hand, as well as the choice of approach in the implementation of SOA, especially from the aspect of choosing the
mode of integration and communication between services, on the other.

In the relevant literature, the following SOA delivery strategies have been identified: top-down, bottom-up, meet-in-
the-middle (also known as outside-in) and middle-out (Terlouw et al., 2009; Slimani et al., 2013). There is a broad
consensus among researchers on the necessity of reaching a compromise between top-down and bottom-up approach.
The first approach starts from a wide perspective of the enterprise and its strategic goals, trying to define specific
solutions that fit into the strategic framework and tactical requirements of individual projects. The second approach
starts from existing systems, technologies or common services, giving preference to urgent requirements and tactical
goals.

Middle-out is a balanced hybrid approach, i.e. compromise between top-down and bottom-up approach, which at the
same time takes the best of both. The application of such a delivery strategy produces both, the compliance of business
and information infrastructure with strategic goals, and services suitable for reuse. In the context of such hybrid
approach, the effective implementation of SOA can be viewed as a careful balancing and alignment of strategic
objectives on the highest level, and immediate, urgent requirements on the tactical and operational level of business, in
a way that supports the reuse of services. Therefore, one of the clearly visible direct advantages of such software
solutions is the possibility of reuse of services. In addition, the positive aspects of this hybrid approach include
achieving relatively fast results, primarily based on reducing potential conflicts between business analysts, software
architects, and developers. Avoiding and overcoming conflicts between people involved in the process of business
software systems development contributes, above all, to a better understanding of business requirements by software
architects and developers, and thus avoiding the problems in translating key strategic goals into concrete software
solutions that need to be delivered fast. It also prevents the occurrence of problems that can lead work in the bounded
context, with a focus on the implementation of specific software solutions and requirements for this software solution.
Due to the lack of consideration of the wider context and the lack of a clear link with the strategic vision and goals,
work in the bounded context for a long-term result has mainly higher costs of business software solutions (Arsanjani,
2004; Marks & Michael, 2006; Microsoft, 2006; Erl, 2007; Rosen et al., 2008; Kohlborn et al., 2009; Valipour et al.,
2009; Mirarab et al., 2014). However, this approach is difficult for the implementation of SOA (Slimani et al., 2013).

On the other hand, the digital era has brought new challenges and demands when it comes to distribution, scaling
and increased the complexity of software solutions. This has led to the evolution of the SOA and the emergence of
several approaches in the implementation of SOA, which, among other things, differ in terms of service granularity,
resource sharing, integration and service communication, such as a traditional ESB approach, service-based approach,
microservices, and serverless approach (Ford et al., 2017). Traditional ESB, as a complex integrator and a service
orchestrator, usually implemented in the form of a monolithic application, was not designed for cloud (Villamizar et al.,
2015; Taibi et al., 2017). For this reason, in the digital era the focus has shifted towards increasing agility and simpler
service-based approach at business and technical level, avoiding the complexity of the ESB to allow faster delivery and

scaling. In this context, the particular challenge is to achieve a balance between the development of business
functionality (business services) and integration with existing systems (integration services), which will deliver an agile,
decentralized, and at the same time resistant architecture that supports the reuse of the service in each iteration.

Bearing in mind the new challenges and demands of the digital era, like fast delivery, scaling, increased complexity
and agility, the question arises as of how to align the business and digital strategy in the context of development of
business software systems using the SOA middle-out delivery strategy and service-based approach in the
implementation of SOA. In this regard, this paper identifies and addresses the challenges and best practices, as well as
significant advantages and disadvantages, related to architectural and methodological aspects in the application of the
SOA middle-out and service-based approach in the context of the development of the business software systems.

The paper is organized as follows: Section 2 contains a critical overview of existing knowledge related to service
identification and delivery strategies, with a special focus on the middle-out approach, as well as different approaches to
SOA implementation, with a special emphasis on service-based approach. Section 3 defines the research questions and
describes the applied research method. Section 4 presents the results of a descriptive case study and an exploratory case
study of the development of a business software system using the SOA middle-out and service-based approach. Section
5 gives answers to research questions, with a reference to the transformation of the applied traditional SOA
methodology, identifies potential follow-up research and highlights research limitations. Finally, conclusions are drawn
and future works delineated.

2. BACKGROUND AND RELATED WORK

The digital strategy connects people, processes and technology (Nahrkhalaji et al., 2018), with one key difference
between the digital strategy and the traditional IT strategy. The traditional IT strategy aims to support the
implementation of a business strategy while the digital strategy can be seen as an IT strategy that tends to become the
highest-level business strategy (Sebastian et al., 2017). Digital strategy radically re-examining the use of digital
technologies to enhance the user experience, operational processes, business models and business strategies, focusing
on one of the above areas and applying specific initiatives to successfully respond to market changes (Westerman et al.,
2011, 2014; Fitzgerald & Kruschwitz, 2013). In this regard, the hierarchy is gradually eliminated and the boundary is
erased between business and IT strategy, leading to their gradual fusion into a digital strategy (Bharadwaj et al., 2013).
Therefore, the need to align business and IT strategy is increasingly becoming a need to align business and digital
strategy. However, aligning business and digital strategy is a bigger challenge because enterprises have a problem when
they try to up-front define a digital strategy, due to a dynamic environment that requires simultaneous changes and
reconfiguration of the various components, not only at the strategic level but also at the level of business and IT
resources (Yeow et al., 2018). Therefore, the importance of IT resources in increasing the ability of enterprises to faster
deliver software systems to the production environment is particularly emphasized (Grover, 2013; Mithas et al., 2013).

In such a context, to understand better importance and potential of SOA to align business and digital strategy, it is
necessary to look at SOA origins, motivational factors, and SOA implementation challenges. Although the term SOA
skewed in 1996., according to the largest number of sources, forward-looking companies, such as banking,
telecommunications and finance companies, were previously able to implement service layers using a variety of
distributed technologies (CORBA, DCOM) to better plan and implement their business strategies (Rosen et al., 2008).
Main drivers and motivation factors for SOA implementation are: increasing agility and flexibility, reuse, rationalizing
data, integration and reducing costs, while key challenges in SOA implementation are: business and IT compliance,
reusable (agnostic) services, efficient development (faster delivery, lower costs), integration of applications and data,
agility and flexibility (Rosen et al., 2008). There are significant challenges in maintaining SOA applications to make
sure compliance with business goals when there is a change in business strategy and goals, and especially if applications
are designed primarily to meet urgent requests or requirements at the tactical level. Therefore, the increase in business-
to-technology compliance is seen as one of the key objectives in the implementation of SOA (Erl, 2007). Accordingly,
Markes & Bell (2006, p. 1) define SOA „as a conceptual business architecture in which the business functionality or
application logic is made available to SOA users or consumers as a shared reusable service available on an IT
network. Services in an SOA are modules of business application functionality, with exposed interfaces and are invoked
by messages“.

The success of SOA implementation depends to a large extent on the choice of delivery strategy and the way
services are identified, using top-down, bottom-up, meet-in-the-middle (also known as outside-in) or middle-out
approach (Terlouw et al., 2009; Slimani et al., 2013). Top-down is an approach driven by a business strategy where
services are identified, designed, and implemented on the basis of a detailed analysis of business requirements
(Arsanjani, 2004; Marks & Michael, 2006; Erl, 2007; Kohlborn et al., 2009). However, the application of this approach
often requires too much time, so, when and even if the project is completed, the developed software solution does not
meet the new business requirements in an altered business environment (Microsoft, 2006). Therefore, it proved to be
impractical, i.e. did not give the desired results (Rosen et al., 2008). In addition, this approach is not suitable if
integration with existing systems is necessary, even in the development of trivial software solutions (Zimmermann et
al., 2005). The bottom-up approach is based on existing IT resources and is run by IT departments in order to develop
reusable services based on existing resources of the organization (Arsanjani, 2004; Marks & Michael, 2006; Erl, 2007;
Kohlborn et al., 2009; Valipour et al., 2009; Mirarab et al., 2014). However, this approach has limited success, because

the development of SOA solution without a direct link to the business context and business goals results in a confusing
implementation with little relevance to the organization (Microsoft, 2006). In addition, this approach increases the
dependence of the service in relation to the existing technological environment (Terlouw et al., 2009) and creates
isolated services that are not suitable for reuse, i.e. do not provide benefit from SOA. The meet-in-the-middle approach
involves combining and iterative application of top-down and bottom-up approach (Marks & Michael, 2006; Erl, 2007),
but existing software systems limit the available options in modeling (Zimmermann et al., 2005), while problems arise
when aligning service candidates from the initial top-down phase with created bottom-up services (Terlouw et al.,
2009).

The middle-out approach is guided by a strategic vision and business goals, and implemented with several smaller
iterative SOA projects, where each individual SOA project is planned and implemented to meet specific business goals
and business requirements (Microsoft, 2006). This approach represents a compromise between top-down and bottom-
up, as it simultaneously produces both business and information infrastructure aligned with strategic goals and reusable
services. The key to simultaneous realizing of these two seemingly irreconcilable goals is the SOA reference
architecture, also known as the initial or minimal architecture (Rosen et al., 2008). However, the need for defining
common semantics for services of different types (business, application, domain, utility, integration, basic, external...)
makes this approach difficult for the implementation of SOA (Slimani et al., 2013). It is interesting that many
researchers do not recognize both, the meet-in-the-middle and middle-out approach, or consider them same using them
as synonyms (Gimnich & Winter, 2007; Wang et al., 2007; Rosen et al., 2008; Nikravesh et al., 2011; Mircea, 2012;
Svanidzaitė, 2012; Mirarab et al., 2014; Pulparambil et al., 2017; Al-Hamed et al., 2018). Some authors additionally use
the term hybrid approach (Bani-Ismail & Baghdadi, 2016). Terlouw et al. (2009) and Slimani et al. (2013) have dealt
with a detailed analysis of these approaches, identifying significant differences in the number and order of activities,
which supports the thesis that these two approaches should be considered separately.

Regardless of the chosen approach to service identification, SOA implementation, as a complex venture, can be
difficult to perform well without the use of an adequate SOA methodology. Ramollari et al. (2007) provide a
comparative overview of the SOA methodologies. They note that the seven identified methodologies support a middle-
out approach: IBM Service-Oriented Analysis and Design (SOAD), IBM Service-Oriented Modeling and Design
(SOMA), SOA Repeatable Quality (RQ), CBDI-SAE Process, Service Oriented Architecture Framework (SOAF),
Service Oriented Unified Process (SOUP) и Papazoglou methodology. Three identified methodologies support a top-
down approach: Mainstream SOA Methodology (MSOAM), BPMN to BPEL и Steve Jones’ Service Architectures,
while none supports bottom-up approach. Rosen et al. (2008) propose their SOA methodology based on a middle-out
approach, reference architecture, common semantics, modeling of business processes, Model-Driven Development
(MDD), service discovery in design time and service governance. Al-hamed (2018), with the aforementioned, identifies
two new methodologies: the Method Engineering paradigm proposed by Garo et al. (2011), which allows the definition
of new methodologies based on the use of parts of existing methodologies in a given context, and Improved
Methodology by Emadi et al. (2012), which supports a meet-in-the-middle approach.

On the other side, the way of integration and communication between services has a major impact on the success of
the SOA initiative. Due to effective governance is one of the key success factors in the implementation of SOA (Cerny
et al., 2017), traditional SOA implementations typically included a use of the ESB. ESB is a universal mediator and an
orchestrator in the communication between services of various types, which enables the integration of different
applications and technologies with built-in mechanisms for the transformation of messages, registration, monitoring and
service governance (Papazoglou & Van Den Heuvel, 2007; Rosen et al., 2008; Rademacher et al., 2017). ESB is a
powerful tool that can significantly simplify the SOA implementation if there is enough service available, even to the
extent that the notion of SOA is often misidentified with the term ESB (Ouertani, 2015). However, the application of
the ESB is not a precondition or guarantee for successful implementation of SOA, because the price to be paid is
increasing complexity and poor performance (Rosen et al., 2008; Cerny et al., 2017).

In the digital era, expansion of digital technologies follows the complexity, distribution, and scalability, as well as
the increase in the speed of software delivery (Erder & Pureur, 2016). ESB is not designed for cloud (Villamizar et al.,
2015; Taibi et al., 2017), therefore it is increasingly criticized as fat, inflexible and difficult to manage (Zimmermann,
2016). A particular problem is the scaling of monolithic applications, where the ESB becomes a bottleneck (Posadas,
2017), which, along with demands for drastic increase in delivery speed, has greatly influenced the evolution of SOA to
new implementation approaches, such as service-based approach and microservices (Ford et al., 2017). They replace the
ESB as orchestrator by direct communication between the services. Bearing in mind that these two approaches are
based on direct communication between the services, some researchers mistakenly view them as the same. However,
there is a key difference between them; a service-based approach emphasizes the reuse of the services and resources
("share-as-much-as-possible"), while microservices are orientated to the concept of a bounded context ("share-nothing"
or "share-as-little-as-possible") (Richards, 2016; Cerny et al., 2017; Ford et al., 2017; Bogner et al., 2018). This is one
of the primary reasons why some authors, who come from the agile community, see microservice architecture (MSA) as
a new architectural style (Fowler, 2015; Pahl & Jamshidi, 2016).

3. RESEARCH METHODOLOGY

The first objective of the research is a better understanding of how SOA middle-out strategy delivery and service-based
approach can contribute to the harmonization of business and digital strategy in the context of the development of
business software systems. The second objective is to identify and address the challenges and best practices, as well as
significant advantages and disadvantages related to the architectural and methodological aspects of the software
development and delivery process in such a context. In this regard, the following research questions (RQ) were set up:

RQ1. How SOA middle-out strategy delivery and service-based approach can contribute to the harmonization of
business and digital strategy?

RQ2. What are the challenges and best practices associated with the application of SOA middle-out and service-based
approach?

RQ3. What are the key advantages and disadvantages of implementing SOA middle-out and service-based approach?

To understand better a combination of SOA middle-out delivery strategy and service-based approach, in the context
of the development of the business software system using digital technologies, the case study method was applied. In
doing so, a descriptive case study is used to better understand the context, the vision of the system and the architectural-
methodological aspects of the process of software development and delivery. In addition, an exploratory case study is
used to identify the challenges, best practices, as well as advantages and disadvantages of such an approach in a given
context. The combination of a descriptive and exploratory case study aims to better understand the problem in its
natural context and define the framework for further research (Yin, 2003; Runeson & Höst, 2009).

For the needs of the research, the case of the development of the software system for performance management of
business processes (hereinafter System) in the Kompanija Boksit was selected. After the implementation of the ERP
system and quality management system for standardization needs (ISO, FSC, HACCP), Kompanija Boksit has
identified a need for a more advanced analytical software tool for managing the performance of the business processes.
The System is based on the SOA middle-out delivery strategy and service-based approach, and digital technologies, as
analytics, cloud and mobile, in the combined ecosystem. A small, dedicated team consisting of 1 to 3 members, with
different levels of competence and experience, has implemented the System. The development of the System has
implied the more active role of existing IT resources and new digital technologies, such as cloud, mobile, and analytics
in redefining and operationalizing of business strategies, especially in the direction of improving business operations,
i.e. the way the value is delivered to the customers (Berman, 2012). In this connection, the digital strategy of Kompanija
Boksit was the result of the gradual fusion of business and IT strategy and can be seen as increasing the capacity of
existing IT resources and potential application of new digital technologies. Therefore, digital strategy of Kompanija
Boksit is not hierarchically subordinated and passive in relation to the business strategy, but more proactive, as an
integral part of business strategy.

Various data sources, including documents, source code and semi-structured interviews with one of the authors were
used in the data collection process. One of the authors, at different positions in Kompanija Boksit, was engaged deeply
in defining and operationalization of the business and digital strategy, implementation of ERP system and quality
management system. In addition, as business analyst, software architect and full-stack developer, he played a decisive
role in the development of the System, especially in the initial phase, where he developed a functional prototype
(Dragičević, 2010), and configured the basic elements of the combined DevSecOps (Development, Security &
Operations) ecosystem, with secured development, testing and production environment. Key research questions were
related to the context, motivation, vision of the system, architectural and methodological aspects of the development
process and the delivery of the System. Qualitative data were collected in order to better understand the process of
development and delivery, and to identify the challenges, best practices, advantages and disadvantages of SOA
application middle-out delivery strategy and service-based approach in aligning the business and digital strategy of
Kompanija Boksit. A qualitative analysis has been used to analyze data, because it supports a more detailed description
of the observed phenomenon, while qualitative data allow for better insight into the complex processes (Eisenhardt &
Graebner, 2007). In order to reduce the risk of bias, two authors have carried out research.

4. EMPIRICAL RESEARCH RESULTS

In accordance with the proposed research method, the results of the descriptive case study were presented first. Results
describe the implementation of the SOA middle-out delivery strategy and service-based approach in the context of the
development of the System in Kompanija Boksit. After that, the results of the exploratory case study have been
presented that identify and address challenges, best practices, as well as the advantages and disadvantages related to
architectural and methodological aspects in the application of SOA middle-out delivery strategy and service-based
approach in the given context.

4.1. Implementation of SOA middle-out delivery strategy and service-based approach
In this section, the results of a descriptive case study are presented to get the answer to the question: How SOA middle-
out strategy delivery and service-based approach can contribute to the harmonization of business and digital strategy?
The case study describes the context, the vision of the system, and the key architectural and methodological aspects of
the development and delivery process of the software in the combined ecosystem.

4.1.1. Context and vision of the system
 Profile - Kompanija Boksit was founded in 1959. As a three times winner of the award for the most successful
company in the Republic of Srpska, Kompanija Boksit is one of the most important companies in the Republic of
Srpska and Bosnia & Herzegovina. From the classic enterprise for research, production and preparation of bauxite ore,
the company has diversified and developed other business activities, from mining to food production, with more than
800 employees and annual revenues of over 30 million EUR; it operates globally, while the most important markets are
the countries of the western Balkans and the EU. The company is organized on the principle of profit centers -
production and service divisions, and supporting departments, including IT department. In order to effectively plan,
organize, operationalize and control business processes, modern methods, techniques, technical means, and IT systems
are used, such as integrated video surveillance, ERP system and quality management system (QMS).

Motivation - Due to the widely diversified business activities, Boksit is positioned on the market as a bidder and a user
of a many of different products and services, and has business connections with a large number of customers and
suppliers. Therefore, Kompanija Boksit has identified the need for the development of a software system for
performance management of business processes (hereinafter System) to improve its IT resources and operational
capabilities in order to more effectively and effectively plan, organize, operationalize and control business processes.
Automation of performance management of business processes aimed at more effective operationalization of the
business strategy with the improvement of the quality management system, which is based on the requirements of ISO
standards, as the basis for continuous monitoring, measurement, and improvement of processes, products, and services.

System vision - The System had to provide a detailed insight into key performance indicators (KIPs) of business
processes, including the ability to obtain detailed overview and drill-down options over different periods of time and
business analytics, such as employee, organizational unit and partner. The System had to limit access to information in
accordance with the positions and authorizations of users using authentication, authorization, and personalization of
content. In addition, the possibility of future connection of the System with other systems of customers, suppliers, and
websites should be foreseen. The System had to utilize the relevant data from the existing ERP system and other records
necessary for calculating KIP's of business processes. It was necessary to ensure the daily update of data and logging all
the activities of users on the System. The System had to be implemented as an SOA solution, while, for the interaction
of users with the System, development of the front-end web application (Web Portal) was envisaged. In the first phase
of the development of the System, the priority
was building of a functional prototype for
KIP's of procurement and sales process, and
after that for production, service and support
processes. The System had to be open to new
functional and non-functional requirements.

The conceptual architecture of the System - is
shown in Figure 1 as a way to, based on the
key demands at the highest level of
abstraction, present scope of the System and
interaction with the environment. It represents
the service-oriented vision of the System at the
highest level, which is the basis for
considering business aspects, in order to
identify and build services that are in line with
the business and suitable for reuse.

4.1.2. Architectural and methodological aspects of software development and delivery process
The process of the System development was based on the SOA methodology proposed by Rosen et al. (2008). The
incremental and iterative nature of the development process is noted, where each iteration is treated as a mini SOA
project in line with the business strategy, tactics, goals and priorities.

The first iteration was aimed at developing a prototype of minimal functionality, including defining the initial
business architecture, identifying the initial set of services, implementing minimal functionality by developing a
minimal subset of identified services. In addition, it includes implementing the minimum of the functionality of the
front-end web application, defining and configuring the key elements of the development, test and production
environments that have enabled the independent delivery of implemented services and front-end web applications, in
order to get quick feedback from the users.

Each of the subsequent iterations, based on the user experience and the selected functional and non-functional
requirements of the highest priority for implementation, involved the following activities: 1) identifying the need for
redefining business architecture, 2) identifying potential new services, need to remove, divide or merge existing
services, 3) design and implementation of new services or modification of the functionality of existing services; 4)
adding functionality to the front-end web application with the integration of new/modified services, and 5) the
independent delivery of new/changed service and/or a front-end web application in the test environment, and/or a

Figure 1: Conceptual architecture of the System
Source: Dragičević (2010), adapted by Authors

production environment, with the knowledge of user acceptance of the changes. Delivery in a test environment was
considered optional, depending on the size and complexity of the increment of functionality. Details of these activities
in the development and delivery process, as well as the elements of the test and production environment essential for the
delivery, monitoring, and management of services, are described below.

Business Architecture

Business architecture, as the basis for achieving
business-IT compliance, provides a basic
overview of the resources and processes of the
organization that need to achieve operational,
tactical and strategic goals. Building business
architecture meant defining a following elements:
a business motivation model, a value chain, and a
business context diagram. In order to link the key
business services to the tactics and business goals
of the enterprise at the strategic and tactical level,
a business motivational model is used, where the
modeling of links between services, business
goals, strategies and tactics allowing monitoring
of service and business compliance (OMG, 2015).

Business services represent IT resources aimed
at supporting the implementation of tactics and
tactical goals, but also to influence the review of
strategy and strategic goals, both at the enterprise
level and at the level of profit centers. Presented
business motivation model of Kompanija Boksit
directly links the business service with tactics,
strategy and business goals (Figure 2).

Based on the process model of the Kompanija
Boksit, a value chain (Figure 3) is identified that
shows the main business processes and their
priorities in terms of importance of creating
additional value (Porter, 1985). The value chain of
Boksit consists of the realization processes, which
include procurement, production and service
processes, sales and post-sales services.

Finally, the business context diagram is
defined (Figure 4) as the first step in the business
analysis, which enables an understanding of
business interaction between actors and systems,
as well as the information they exchange.

 Service identification

 In order to identify an initial set of potential
services, as well as a better understanding of the
user-system interaction, a top-level process model
is defined describing typical user interaction with
the system. Based on business requirements,
business context diagrams and process model,
different use cases have been identified. In the
context of the enterprise, the security aspects of
the solution were examined and the initial service
model of the top-level software solution
architecture, the entity model and the information
model were defined.
Security aspects are considered in the initial SOA
implementation iteration because security
requirements affect the overall SOA design. User
authentications is done on the Web Portal, while
the Web Portal, as well as the potential systems of
customers and suppliers, in the future interactions
with the services, must confirm their identity.

Figure 2: Business motivation model of Kompanija Boksit
Source: Dragičević (2010), adapted by Authors

Figure 3: Value chain of Kompanija Boksit
Source: Dragičević (2010), adapted by Authors

Figure 4: Business context diagram of the System

Source: Dragičević (2010), adapted by Authors

Authorization is based on the mechanism of roles and rules. The basic rule is that the employee using the system,
depending on the roles, has the ability only to see own data, data related to the organizational unit it belongs to, as well
as to the subordinated organizational units. There is a possibility of defining rules for exceptions, in the direction of the
extension these rights, and towards narrowing down these rights.

 The service model of the top-level software solution architecture (Figure 5) determines the granularity of the
service and supports the integration of the legacy systems (ERP), business services and front-end web application. The
initial service model contains a broader set of services (applications, work, domains, services, basic and integration) in
relation to the conceptual architecture, describing the main responsibilities of individual services and enabling decision-
making regarding the inclusion of certain functionalities in the design and implementation of the service. The
application service Portal is responsible for separating the presentation from the business logic, for determining

individual rights and user
preferences (authorization and
personalization), as well as for
implementing the logic at the
individual user level. This
increases the potential for reuse of
the service. Considering the
context of the enterprise,
significant attention is paid to
identifying common information
that will be exchanged between
the services. In this regard, the
main entities from the business
domain are identified, followed by
their connections and information
exchanged between the service,
which will then be declared in the
service interfaces.

Service interface design

 For each service selected for implementation in the current iteration, an interface is designed to include a minimal set
of operations and documents, i.e. the parameters passed to the operations, and the result that returns the operation
(Figures 6 and 7). The basic difference between service operations and object methods is that service operations are
more granular. In order to minimize dependencies between services, a simple interaction is designed, especially when it
comes to entity services and basic services, in order to preserve their huge potential for reuse. The parameters and
results of operations are defined in the light of common semantics, with a minimal set of data, avoiding exposure of
information that is not needed or which should not be exposed, with the use of naming conventions that simplify and
facilitate communication between the services (CoC - Convention over Configuration). The granularity of the interface,
as well as the granularity of the service, is related directly to the potential of reuse of the service, and it differs
depending on the purpose of the service. Application, business, and integration services have the highest granularity,
domain services are medium-sized, while service and basic services are the least granular. In the design of the
integration service, the existing functions and data from the ERP system are transformed into new functionalities and
information that contribute to the realization of the strategy and strategic goals. When identifying the need to change the
functionality of the service, instead of the versioning, the replacement of the old with the new version of the service is
applied, i.e. the old version of the service is discarded, while the new version of the service ensures the functionality for
old and new service users.

Figure 6: Anatomy of service

Source: Rosen et al. (2008, p. 51)
Figure 7: Architecture of service

Source: Rosen et al. (2008, p. 255)
Figure 8: Implementation of service

Source: Kompanija Boksit, source code

Figure 5: Service model of the top-level software solution architecture
Source: Dragičević (2010), adapted by Authors

Service design and implementation

Services are designed and implemented in accordance with the design principles proposed by Erl (2007). Each service
was developed using WCF, .NET technology, and a 3-tier architectural approach to separate interface, business logic,
and access to resources (Figures 7 and 8). Any implemented service can be deployed in a production environment,
independently of other services. The services can be accessed through various communication modes that can realize
less or more advanced security mechanism for communicating with other services, which are defined in the
configuration file. Business, domain and integration services share a common data source (System Database), while
basic services have their own data sources using redundant data, which do not share with other services.

Implementation of a service-oriented solution

In order to support the reuse of existing services and enable faster and cost-effective development of the business
software based on new or changed business requirements, layered N-tier solution architecture is applied (Figure 9). The
presentation layer is responsible for adapting the content for a user device, thus making the other layers independent of
the device, as well as communicating with the session layer. The session layer is where the system allows multiple
interactions with a single user. Services in this layer are responsible for coordinating and managing the user session and
session-related user data, authorizing users and applying business rules at the user level, as well as for communicating
with the business logic layer. The business logic layer contains the services responsible for implementing business logic
and domain entities, and for the availability of their functionality through service interfaces. Services from this layer
maintain the integrity of shared resources, enforce system business rules, provide a framework and control for
transactions, and provide business services for users. The boundary between the session layer and the layer of business
logic enables the separation of enterprise resources and resources required to support the user, and therefore, better
protection and governance of enterprise resources. The resource layer is responsible for managing the shared resources
of the enterprise. This layer provides access to shared enterprise resources (data, databases and legacy systems). The
Web Portal was developed as an independently delivered, monolithic web application, based on the application of .NET
and Ajax technology, which at the request of the authorized user provides insight into the performance by combining
various tabular and graphic displays, allowing drill-down into details. The link between the Web Portal and the business
service is realized through the application service Portal, which has the role of a facade, i.e. separating the presentation
layer from the business logic layer. Any iteration in the development process required the alignment of the
implementation of new functionalities at the level of the Web Portal and at the level of individual services, in order to
allow the rapid delivery of each subsequent increment of functionality.

Testing, delivery and monitoring in the combined ecosystem

The combined DevSecOps ecosystem contains development, testing, and production environment. Particular attention is
paid to security, so the test and production environment is implemented as a private cloud, protected by a firewall, with
a Proxy server in the demilitarized zone, while the Web and Database server is behind the firewall in the separated part
of the LAN. Scripts and tools were used for delivery, testing, and monitoring. Delivery of services from a development
environment into a desired, test or production environment, is realized in two steps: 1) by choosing the appropriate
publish profile installation files are generated and 2) by launching the corresponding deploy script simultaneously
removing the old one and installing a new version of the services and/or front-end web application, with the
simultaneous backup of old and new versions. In the production environment, only one version of the service is active
at one point, while the previous versions can be restored at any time using the same deploy script. For monitoring
purposes, a tool has been developed that automatically sends e-mail alerts and reports on the realization of scheduled
tasks and identified errors.

Figure 9: N-tier solution architecture
Source: Dragičević (2010), adapted by Authors

4.2. Challenges and best practices
This section presents the results of the qualitative analysis of data in order to get the answer to the question: What are
the challenges and best practices associated with the application of SOA middle-out and service-based approach? A
total of 27 challenges and 27 practices related to the application of SOA middle-out and service-based approach have
been identified and grouped by activities and artifacts of the development and delivery process in the combined
ecosystem (Table 1).

Table 1: Challenges and best practices
Activity Artefacts Challenges Best practices

Context and vision of
the system

 «document»
- Conceptual architecture of the
system

- Selection of system implementation
strategy
- Defining external system boundaries
- The flexibility of system architecture

- Lean thinking (timely thinking and
planning)
- Early focus on non-functional
requirements (quality attributes)
- Continuous, incremental value
delivery
- Minimal documentation

Business architecture «document»
- Business motivation model
- Value chain
- Business context diagram

- Understanding the context and
interaction of the system and the
environment
- Prioritization of business processes
and activities
- Identification of links between business
and IT resources

Service identification

 «document»
- Model of process
- Use cases
- Service model of the system
architecture
- Types and taxonomy of the
services

- The interdependencies of the requests
- Determining the size of a functional
and/or architectural increment
- Identifying the services that will
implement the increment of the
functionality
- Determining service granularity
- Identifying shared information
- Enabling service reuse

- Model-Driven Development (MDD)
- Walking skeleton
- Minimal Viable Architecture (MVA)
- Minimal Viable Product (MVP)
- Application of the service design
principles
- Services of different types and
granularity
- Common service semantics
- Service replacement (no versioning)
- Independently delivered services
- 3-tier service architecture
- N-tier system architecture
- Continuous Architecting (CA)
- Continuous Integration (CI)
- Continuous Delivery (CD)
- Continuous Refactoring (CR)
- Convention over Configuration
(CoC)
- Micro-team (1-3 members)

Service interface
design

 «source code»
- The mode of communication
between the service
- End-points
- Operations
- Documents (parameters and
results of operations)

- Interdependence of services,
especially between business and
integration services
- Choosing the mode of communication
between the services
- Determining the granularity of the
service interface
- Defining the scope and visibility of the
service
- Choice of approach to service
versioning

Service design and
implementation

 «source code»
- Business rules
- Business logic
- Service local data
- Shared data

- Selecting a type of service
implementation
- Preserving the autonomy of the
services
- Managing shared resources

Implementation of a
service-oriented
solution

 «source code»
- Front-end communication with
services
«document»
- Service layout by layers of
N-tier architecture

- Defining internal system boundaries
- Deploying services to the layers of N-
tier system architecture
- Scalability of the system
- User experience

Testing, delivery and
monitoring in a
combined ecosystem

 «tool»
- Tools and scripts for build,
publish, test and deploy
«report»
- Reports of the execution of
scheduled tasks
- Error reports

- Defining and configuring the
development, testing, and production
environment in combined ecosystem
- Effective testing
- Monitoring of services

- DevSecOps ecosystem
- Virtualization
- Private cloud
- Combined, semi-automated testing
- Semi-automated delivery
- Development of tools for monitoring
and error reporting

Source: Authors

4.3. Advantages and disadvantages
This section presents the results of the qualitative analysis of data in order to get the answer to the question: What are
the key advantages and disadvantages of implementing SOA middle-out and service-based approach? In total, eight key
advantages and seven key disadvantages were identified that are associated with the application of SOA middle-out and
service-based approach (Table 2).

Table 2: Advantages and disadvantages

Advantages Disadvantages

1. Better alignment of business and IT resources
Direct linking of business services with business strategy, tactics, and
goals, identification of services at the enterprise level, as well as iterative
approach with small increments and daily deliveries, contribute to
increasing the alignment of business and IT resources, i.e. harmonizing
business and digital strategy.

2. Increasing agility and flexibility
The great potential for reuse of application, basic, infrastructure and
integration services, due to their autonomy and the possibility of
independent delivery, contributes to increasing of agility and flexibility at
enterprise level and software development and delivery process level.

3. Agilization of SOA methodology
The application of various agile, lean and continuous practices with SOA
methodology has made it possible to reduce increments, increase delivery
speed to the level of multiple daily software deliverables, and to get faster
feedback from users.

4. Reducing the complexity of the system
The greater granularity of application, business and integration services
prevents an uncontrolled increase in the number of services, which
contributes to reducing the complexity of the system architecture.

5. Increasing ability to scale services
Independently deliverable services enable easier scaling, both of the
individual parts (services) and the system as a whole.

6. Fewer errors and bugs
A micro-team with good communication, a service design that supports
testing at the service level, small increments and fast deliveries on a daily
basis, contribute to reducing the number, significance, and consequence
of errors and bugs, and their faster resolution.

7. Faster delivery of functionality
Independent service delivery, small increment and fast feedback from the
user support faster delivery of expected functionality to users.

8. Increasing security
An early focus on quality attributes, including security and personalization,
layered architecture and a combined ecosystem with a test and
production environment in private cloud, contribute to increasing of
system security.

1. Up-front architecture and design
The lack of all relevant information, when it comes to expected
functionality and user experience in the initial iteration of the
development process, increases the risk of identifying and realizing
services, or their functionalities, that will require a big refactoring or
prove to be unnecessary.

2. Increased risk of data inconsistency
Data redundancy contributes to an increase in service autonomy;
however, redundancy of data, with service delivery at short time
intervals and distributed transactions, increases the risk of
inconsistency in the data.

3. Poor user experience
Multiple daily deliveries to production environment lead to frequent
interruptions of the current sessions or user activities that have a
negative impact on the user experience in working with the system.
On the other hand, the number of users affected by service delivery
depends directly upon the scope, visibility, and granularity of the
delivered services, while the delivery of monolithic front-end web
application can affect all active users.

4. Shared resource scaling problem
Shared resources, and in particular shared SQL databases, are not
suitable for scaling.

5. Lack of competent people
It is difficult to find and train, and it is even more difficult to retain
people with broad knowledge, competencies, and experience, as
well as exceptional discipline and professionalism that are
necessary for the role of business analysts, architects and/or full-
stack developers, given the complexity that adds the combined
DevSecOps ecosystem. The lack of competent people has a
negative impact on the ability of the team scaling.

6. Redundancy of data
More discipline is needed in order to preserve the consistency of the
entire system due to redundant data.

7. Difficult testing of the whole system
Increase in a number of services, frequent changes of the interfaces
and replacement of services with discarding old versions make it
more difficult to test the entire system.

Source: Authors

5. DISCUSSION

This section provides answers to research questions, with a reference to the transformation of the applied traditional
SOA methodology, which is motivated by the increase in the speed of software delivery. After that, possibilities for
further research and limitations of the conducted research are presented.

Answers to research questions:
The results of the research indicate that, in order to harmonize business and digital strategy of the enterprise in the
context of the development of a business software system, it is possible to successfully apply the SOA middle-out and
service-based approach by combining 1) the traditional SOA methodology that supports middle-out delivery strategy
(Rosen et al., 2008), 2) services of different type and granularity, 3) the appropriate practices of agile architecture
(Dragičević & Bošnjak, 2018), and 4) DevSecOps combined ecosystem, in a way that simultaneously supports reuse of
services and fast, even multiple daily, delivery of services and/or front-end web application. In addition, a special focus

was on the first iteration, which is based on the initial context and vision of the system, as well as the initial business
architecture and service model, that produces the initial software architecture (walking skeleton) and functional
prototype. In each subsequent iteration, using as small as possible increments, new/changed services and/or front-end
web applications with new or modified functionality were delivered fast with fast user feedback. However, the
described approach is not easy to implement, which best illustrates the 27 identified challenges associated with the
different activities of the development and delivery process in the combined ecosystem. Overcoming these challenges
required the implementation of 27 identified practices of agile architecture in the combined ecosystem, that enable fast
simultaneous incremental delivery of required functionality, and to provide an agile, decentralized, resilient architecture
that supports the reuse of services. The described approach has its advantages and disadvantages. The key identified
advantages are better compliance of business and IT resources and faster delivery of functionality as key factors for the
alignment of business and digital strategy, which is in line with the results of Yeow et al. (2018), Grover & Kohli
(2013) and Mithas et al. (2013). Other identified advantages are increasing agility and flexibility both at the enterprise
level and at the level of the development process, reducing the complexity and number of errors and increasing the
security and potential for service scaling. On the other hand, a key disadvantage of this approach is a lack of competent,
experienced people who can successfully take on multiple roles, from business analysts, through the software architect,
and to a full-stack developer. In addition, the price to be paid is a significant up-front and a continuous focus on
architecture and design, data redundancy and the difficulty of maintaining their consistency, with additional problems in
scaling shared resources, as well as poor user experience and difficult testing of the entire system due to frequent
deliveries of modified/new services and/or front-end web application in the combined ecosystem.

Transformation of traditional SOA methodology:
Development of a service-oriented software system is based on the existing traditional SOA methodology (Rosen et al.,
2008). However, differences in the realization of certain activities are identified, especially considering fact that the
used SOA methodology was presented in 2008, prior to the emerging of Continuous Delivery (CD) practice in 2010,
and an expansion of the use of digital technologies, which caused an increase of speed of software delivery. In this
regard, the following key differences are noted in relation to the approach proposed by Rosen et al. (2008):

 Continuously and timely thinking and planning, instead of up-front plans for defining priorities and software
architecture design.

 Minimal documentation and increased use of source code as a source of documentation, which includes
interfaces and service operations, semantic information model, service inventory and service architecture.

 Micro-team responsible for the complete life cycle of the service and software system, with broad
competencies of team members, who are able to simultaneously realize multiple roles, from business analysts,
software architect, to the full-stack developer, instead of a large team of specialists in many different fields.

 Agilizing SOA methodology with the application of various agile, lean and continuous practices, instead of the
traditional SOA methodology. Even though agilization of the traditional SOA methodology by agile, lean and
continuous practices can be considered as a process opposite to the traditionalization of the agile process of
software development by using architectural practices (Matković et al., 2011), the ultimate goals are the same.

 Independently delivered services, fast delivery and user feedback, instead of monolith application.
 Replacing the services, instead of versioning the services.
 The simpler DevSecOps ecosystem, supported by scripts and tools for semi-automated testing, delivery, and

monitoring, instead of a complex production middleware that supports ESB service orchestration and
automation of business processes.

Opportunities for further follow-up research:
Realized research is based on the single case of the development of a business software system in one company, so
additional empirical researches are proposed at the successful and unsuccessful implementation of SOA middle-out and
service-based approach in the digital era. Given that there is no consensus on how to use existing agile methods and
practices in the development of service-oriented systems (Carvalho & Azevedo, 2013), further research should be done
regarding the possible positive impact of agile, lean and continuous principles, methods, techniques and practices on the
transformation of traditional SOA methodologies for the development of business software systems in the digital era.
Bearing in mind the perceived disadvantages of SOA middle-out and service-based approach in the digital era, future
research should identify a possibilities for overcoming them by integrating microservices and a service-based approach
in the context of the development of business software systems.

Research limitations:
There are three limitations of the research to be taken into account. First, the research is based on a specific example of
the development of business software in just one company; therefore, two separate case studies were conducted - first a
descriptive case study, in order to describe in detail and better understand the observed phenomenon in its natural
environment, and then an exploratory case study, in order to identify the challenges, practices, advantages and
disadvantages of the applied architectural-methodological approach, and identify the possibilities for further research.
Second, one of the authors in various positions in Kompanija Boksit played a roles both in defining business and digital
strategy, as well as in implementing System. Therefore, in order to reduce the risk of bias, more researchers are
involved in a planning and implementation of the research. Third, the research is based exclusively on qualitative data,

therefore, for the needs of qualitative analysis, various sources of qualitative data, including documents, source code,
and semi-structured interviews, have been used.

CONCLUSIONS

The paper presents the results of empirical research that describe the key architectural and methodological aspects of the
implementation of SOA middle-out delivery strategies and service-based approach, in the context of business software
system development, that are significant for harmonization of business and digital strategy, as well as identified
challenges, best practices, the advantages and disadvantages of such an approach. The results of the research indicate
that effective implementation of SOA middle-out delivery strategies and service-based approach can help businesses to
respond faster, more efficiently and more effectively to the changing business environment in the digital era. The
importance of SOA implementation in enterprises is that it is a good opportunity to define, revise and harmonize
business and digital strategy, redefine strategic and/or tactical goals, and build or improve the business architecture.
Implementation of SOA in the digital edge is an evolutionary process, which starts with a better understanding of the
context, based on existing business and IT resources, in order to upgrade them iteratively. The result of this process is
building new IT resources and extending the functionality of existing ones, adding new value to them, avoiding
duplication of responsibility and inconsistency. To do all this, business architecture and service design process must be
mutually supportive and coordinated. There must be a clear link indicating that the resulting business architecture
elements directly support the design of the services. Starting from vision, business strategy, strategic goals and business
resources, on the one hand, and digital strategies and available IT resources, on the other hand, through business
processes, which are most important for achieving business goals, we can identify desired functionalities, services,
business entities and the information by which these functionalities are implemented.

Research contributions are a better understanding of the relationship between business and digital strategy in the
context of SOA implementation, the challenges and best practices, as well as the advantages and disadvantages, related
to the architectural and methodological aspects of the implementation of the SOA middle-out delivery strategy and
service-based approach in the digital era. The findings will contribute to the discussion of the evolution of SOA in the
digital era toward increasing of agility and reducing of complexity, in order to more effectively align business and
digital strategy, and help practitioners to more effectively implement SOA initiatives in the development of business
software systems.

Future research should focus on additional empirical research related to application of SOA middle-out and service-
based approach in the digital era, including a transformation of traditional SOA methodologies using an agile approach.
In addition, future research should aim toward identifying a possibility of combining microservices and service-based
approach in the context of the development of business software systems.

REFERENCES

Al-Hamed, F., Al-Doweesh, S., Al-Omar, R., Al-Doweesh, W., & Najjar, A. (2018, April). Service Oriented Software

Engineering (SOSE): A Survey and Gap Analysis. In 2018 21st Saudi Computer Society National Computer
Conference (NCC) (1-6). IEEE.

Arsanjani, A. (2004). Service-oriented modeling and architecture. IBM developer works, (January), 1–15.
Bani-Ismail, B., & Baghdadi, Y. (2016). SOA Maturity Models as guidance to select service identification methods: A

research agenda. In 2016 IEEE Tenth International Conference on Research Challenges in Information Science
(RCIS) (pp. 1-6). IEEE.

Berman, S. J. (2012). Digital transformation: opportunities to create new business models. Strategy & Leadership, 40(2),
16-24.

Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital business strategy: toward a next
generation of insights. MIS quarterly, 471-482.

Bogner, J., Zimmermann, A. & Wagner, S. (2018) ‘Analyzing the Relevance of SOA Patterns for Microservice-Based
Systems’, Zeus 2018, 9(February), pp. 9–16.

Carvalho, F., & Azevedo, L. G. (2013). Service agile development using XP. In 2013 IEEE Seventh International
Symposium on Service-Oriented System Engineering (254-259). IEEE.

Cerny, T., Donahoo, M. J., & Pechanec, J. (2017). Disambiguation and comparison of soa, microservices and self-
contained systems. In Proceedings of the International Conference on Research in Adaptive and Convergent
Systems(pp. 228-235). ACM.

Dragičević, Z. (2010). Implementation of SOA using .NET and Ajax technologies (Master’s thesis), Faculty of Economics,
Subotica.

Dragičević, Z. & Bošnjak, S. (2018). Agilna arhitektura u eri digitalizacije - trendovi i prakse. In Strategic Management
and Decision Support Systems in Strategic Management (98–116). Subotica: Faculty of Economics in Subotica.

Eisenhardt, K. M., & Graebner, M. E. (2007). Theory building from cases: Opportunities and challenges. Academy of
management journal, 50(1), 25-32.

Emadi, M., Jazi, M. D., Moghadam, R. A., & Bahredar, F. (2012, May). An improved methodology for service oriented
architecture. In 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE) (Vol.
2, pp. 350-354). IEEE.

Erder, M., & Pureur, P. (2016). What's the Architect's Role in an Agile, Cloud-Centric World?. IEEE Software, 33(5), 30-
33.

Erl, T. (2005). Service-Oriented Architecture (SOA): Concepts, Technology, and Design, Upper Saddle River: Prentice
Hall.

Erl, T. (2007). SOA: Principles of Service Design, (Vol. 1). Upper Saddle River: Prentice Hall.
Fitzgerald, M., Kruschwitz, N., Bonnet, D., & Welch, M. (2014). Embracing digital technology: A new strategic

imperative. MIT sloan management review, 55(2), 1.
Ford, N., Parsons, R. & Kua, P. (2017). Building Evolutionary Architectures: supporting constant change. O’Reilly Media,

Inc.
Fowler, M. (2015) Microservice Trade-Offs. Retrieved January 18, 2018 from:

https://martinfowler.com/articles/microservice-trade-offs.html
Garro, A., Russo, W., & Tundis, A. (2011). Developing Service-Oriented Applications: a method engineering based

approach. In Proceedings of the International Conference on Semantic Web and Web Services (SWWS) (p. 1). The
Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing
(WorldComp).

Gimnich, R., & Winter, A. (2007). SOA migration: approaches and experience. Softwaretechnik-Trends, 27(1), 13-14.
Grover, V., & Kohli, R. (2013). Revealing your hand: caveats in implementing digital business strategy. Mis Quarterly,

655-662.
Kohlborn, T., Korthaus, A., Chan, T., & Rosemann, M. (2009). Identification and analysis of business and software

services—a consolidated approach. IEEE Transactions on Services Computing, 2(1), 50-64.
Marks, E. & Michael, B. (2006). Service-Oriented Architecture: A Planning and Implementation Guide for Business and

Technology Service-Oriented Architecture. John Wiley & Sons.
Matković, P., Tumbas, P., & Sakal, M. (2011). The RSX model: Traditionalisation of agility. Strategic Management, 16(2),

74-83.
Microsoft (2006) Enabling ‘Real World SOA’ through the Microsoft Platform. Retrieved March 15, 2018 from:

https://www.brightts.com/course/downloads/1.pdf
Mirarab A., Fard N. G. & Kenari, A. (2014). A New Framework for Service Identification in SOA. Global Journal of

Computer Science and Technology, 14(5).
Mircea, M. (2012). SOA adoption in higher education: a practical guide to service-oriented virtual learning

environment. Procedia-Social and Behavioral Sciences, 31, 218-223.
Mithas, S., Tafti, A., & Mitchell, W. (2013). How a firm's competitive environment and digital strategic posture influence

digital business strategy. MIS quarterly, 511-536.
Nahrkhalaji, S. S., Shafiee, S., Shafiee, M., & Hvam, L. (2018). Challenges of Digital Transformation: The case of the

Non-Profit Sector. In 2018 IEEE International Conference on Industrial Engineering and Engineering Management
(IEEM) (1245-1249). IEEE.

Nikravesh, A., Shams, F., Farokhi, S., & Ghaffari, A. (2011, October). 2PSIM: two phase service identifying method.
In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (625-634). Springer,
Berlin, Heidelberg.

OMG (2015) Business Motivation Models, Object Management Group. Retrieved March 21, 2019 from:
https://www.omg.org/spec/BMM/1.3/pdf

Pahl, C., & Jamshidi, P. (2016, April). Microservices: A Systematic Mapping Study. In CLOSER (1) (137-146).
Papazoglou, M. P., & Van Den Heuvel, W. J. (2007). Service oriented architectures: approaches, technologies and

research issues. The VLDB journal, 16(3), 389-415.
Porter, M. E. (1985). Competitive Advantage: Creating and Sustaining Superior Performance. The Free Press.
Posadas, J. V. (2017, August). Application of mixed distributed software architectures for social-productive projects

management in peru. In 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and
Computing (INTERCON) (1-4). IEEE.

Pulparambil, S., Baghdadi, Y., Al-Hamdani, A., & Al-Badawi, M. (2017). Exploring the main building blocks of SOA
method: SOA maturity model perspective. Service Oriented Computing and Applications, 11(2), 217-232.

Rademacher, F., Sachweh, S., & Zündorf, A. (2017, April). Differences between model-driven development of service-
oriented and microservice architecture. In 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW) (38-45). IEEE.

Ramollari, E., Dranidis, D., & Simons, A. J. (2007, June). A survey of service oriented development methodologies.
In The 2nd European Young Researchers Workshop on Service Oriented Computing (Vol. 75).

Richards, M. (2016). Microservices vs. Service-Oriented Architecture. O’Reilly Media, Inc.
Rosen, M., Lublinsky, B., Smith, K. T. & Balcer, M. J. (2008). Applied SOA: Service-Oriented Architecture and Design

Strategies. Wiley Publishing, Inc.
Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software

engineering. Empirical software engineering, 14(2), 131.
Sebastian, I., Ross, J., Beath, C., Mocker, M., Moloney, K., & Fonstad, N. (2017). How Big Old Companies Navigate

Digital Transformation. MIS Quarterly Executive, (September), 197–213.
Šereš, L. & Tumbas, P. (2014). ERP & Globalization�: Challenges and Responses. Strategic Management, 19(4), pp.

50–57.
Slimani, S., Baïna, S., & Baïna, K. (2013). Toward a semantic SOA implementation strategy. In 2013 3rd International

Symposium ISKO-Maghreb (1-4). IEEE.
SOA Manifesto (2013). Retrieved March 12, 2019 from: http://www.soa-manifesto.org/SOA_Manifesto.pdf
Svanidzaitė, S. (2012). A comparison of SOA methodologies analysis & design phases. In Baltic DB & IS 2012, Tenth

International Baltic Conference on Databases and Information Systems (202-207).
Taibi, D., Lenarduzzi, V., Pahl, C. & Janes, A. (2017). Microservices in agile software development. In Proceedings of

the XP2017 Scientific Workshops on - XP ’17 (1–5). ACM.
Terlouw, J., Terlouw, L., & Jansen, S. (2009). An assessment method for selecting an SOA delivery strategy:

determining influencing factors and their value weights. In Proceedings of the Busital workshop.
Valipour, M. H., AmirZafari, B., Maleki, K. N., & Daneshpour, N. (2009). A brief survey of software architecture concepts

and service oriented architecture. In 2009 2nd IEEE International Conference on Computer Science and Information
Technology (34-38). IEEE.

Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., & Gil, S. (2015, September). Evaluating
the monolithic and the microservice architecture pattern to deploy web applications in the cloud. In 2015 10th
Computing Colombian Conference (10CCC) (583-590). IEEE.

Wang, X., Hu, S. X., Haq, E., & Garton, H. (2007, June). Integrating legacy systems within the service-oriented
architecture. In 2007 IEEE Power Engineering Society General Meeting (1-7). IEEE.

Westerman, G., Bonnet, D. & McAfee, A. (2014). Leading digital: Turning technology into business transformation.
Harvard Business Press.

Westerman, G., Calméjane, C., Bonnet, D., Ferraris, P., & McAfee, A. (2011). Digital Transformation: A roadmap for
billion-dollar organizations. MIT Center for Digital Business and Capgemini Consulting, 1, 1-68.

Yeow, A., Soh, C., & Hansen, R. (2018). Aligning with new digital strategy: A dynamic capabilities approach. The Journal
of Strategic Information Systems, 27(1), 43-58.

Yin, R. K. (2003). Case Study Research: Design and Methods. Sage Publications, p. 53.
Zimmermann, O. (2017). Microservices tenets. Computer Science-Research and Development, 32(3-4), 301-310.
Zimmermann, O., Schlimm, N., Waller, G., & Pestel, M. (2005). Analysis and Design Techniques for Service-Oriented
Development and Integration. In GI Jahrestagung (2) (606-611).

